Course Description
The course is broadly divided into 2 modules:
- Module 1 Random Number Generation
- Module 2 Random Processes
Course Syllabus
Review of basic probability: Random variables and random vectors, Classical Inequalities and limit theorems
Random Number Generation; Generation of Random Variables: Inverse Transform method, Acceptance- rejection method, Variance Reduction methods: Control Variate, Conditioning, Importance Sampling; Uncertainty, Entropy.
Random Processes: Definition and classification of random processes, Autocorrelation and properties, Random process through LTI systems, Bernoulli processes, Markov Chains (MCs): Preliminaries, Discrete-time MC: Transition Probability Matrix, Classification of states, Chapman-Kolmogorov Equation, Limiting & stationary Distributions, Ergodic MC; Continuous time MC: Poisson Process, Weiner process, Birth and Death Processes; Application and Case Studies.
Course Logistics
- Schedule: Slot E, 8:00 am - 8:55 am Tuesday, 9:00 am - 9:55 am Wednesday, 10:00 am - 10:55 am Thursday
- Venue: 5205, Core 5.
Course Evaluation
- Quizzes: 30%
- Mid semester exam: 30%
- End semester exam: 30%
- Participation: 10%
Some references (not an exhaustive list)
- Ross, S.M., 2022. Simulation. Academic Press.
- Ross, S.M., 1995. Stochastic processes. John Wiley & Sons.
- Bertsekas, D. and Tsitsiklis, J.N., 2008. Introduction to probability (Vol. 1). Athena Scientific.
- Blitzstein, J.K., and Hwang J., 2019. Introduction to probability. Taylor & Francis Group, LLC.
Tentative Lecture Plan
| Lecture | Date | Topic |
|---|---|---|
| Lecture 1 | 6-Jan-2026 | Introduction to Monte Carlo Simulations |
| Lecture 2 | 7-Jan-2026 | Pseudorandom number generators |
| Lecture 3 | 8-Jan-2026 | Inverse transform for discrete random variables |
| Lecture 4 | 13-Jan-2026 | Accept-Reject sampling for discrete random variables |
| Lecture 5 | 15-Jan-2026 | Code our AR sampler for Binomial(n,p) together |
| Lecture 6 | 15-Jan-2026 | Composition method |
| Lecture 7 | 20-Jan-2026 | Inverse transform for continuous random variables, Accept-Reject sampling for continuous random variables |
| Lecture 8 | 21-Jan-2026 | Accept-Reject sampling for continuous random variables |
| Lecture 9 | 27-Jan-2026 | Quiz 1 |
| Lecture 10 | 28-Jan-2026 | Accept-Reject sampling for continuous random variables |
| Lecture canceled | 3-Feb-2026 | Sampling from a uniform circle; Some more examples for AR sampling |
| Lecture 11 | 4-Feb-2026 | Sampling from a uniform circle; Some more examples for AR sampling |
| Lecture 12 | 5-Feb-2026 | Code together - AR sampler for circle, AR sampler for Gamma distribution |
| Lecture 13 | 10-Feb-2026 | Box-Muller method; Ratio of Uniforms |
| Lecture 14 | 11-Feb-2026 | Ratio of Uniforms; Miscellaneous methods in sampling |
| Lecture 15 | 12-Feb-2026 | Miscellaneous methods in sampling |
| Lecture 16 | 17-Feb-2026 | Simple Monte Carlo, Importance sampling |
| Lecture 17 | 18-Feb-2026 | Importance sampling |
| Lecture 18 | 19-Feb-2026 | Importance sampling |
| Lecture 19 | 25-Feb-2026 | Optimal Importance sampling |
| Lecture 20 | 26-Feb-2026 | Quiz 2; Uncertainty; Entropy |
| 6-Mar-2026 | Mid Semester Examination | |
| Lecture 21 | 10-Mar-2026 | |
| Lecture 22 | 11-Mar-2026 | |
| Lecture 23 | 12-Mar-2026 | |
| Lecture 24 | 17-Mar-2026 | |
| Lecture 25 | 18-Mar-2026 | |
| Lecture 26 | 19-Mar-2026 | |
| Lecture 27 | 24-Mar-2026 | |
| Lecture 28 | 25-Mar-2026 | |
| Lecture 29 | 26-Mar-2026 | |
| Lecture 30 | 1-Apr-2026 | |
| Lecture 31 | 7-Apr-2026 | |
| Lecture 32 | 8-Apr-2026 | |
| Lecture 33 | 9-Apr-2026 | |
| Lecture 34 | 13-Apr-2026 | |
| Lecture 35 | 16-Apr-2026 | |
| Lecture 36 | 21-Apr-2026 | |
| Lecture 37 | 22-Apr-2026 | |
| Lecture 38 | 23-Apr-2026 | |
| Lecture 39 | 28-Apr-2026 | |
| Lecture 40 | 29-Apr-2026 | |
| Lecture 41 | 30-Apr-2026 | |
| 8-May-2026 | End Semester Examination |