Course Description

The course is broadly divided into 2 modules:

  • Module 1 Random Number Generation
  • Module 2 Random Processes

Course Syllabus

Review of basic probability: Random variables and random vectors, Classical Inequalities and limit theorems

Random Number Generation; Generation of Random Variables: Inverse Transform method, Acceptance- rejection method, Variance Reduction methods: Control Variate, Conditioning, Importance Sampling; Uncertainty, Entropy.

Random Processes: Definition and classification of random processes, Autocorrelation and properties, Random process through LTI systems, Bernoulli processes, Markov Chains (MCs): Preliminaries, Discrete-time MC: Transition Probability Matrix, Classification of states, Chapman-Kolmogorov Equation, Limiting & stationary Distributions, Ergodic MC; Continuous time MC: Poisson Process, Weiner process, Birth and Death Processes; Application and Case Studies.

Course Logistics

  • Schedule: Slot E, 8:00 am - 8:55 am Tuesday, 9:00 am - 9:55 am Wednesday, 10:00 am - 10:55 am Thursday
  • Venue: 5205, Core 5.

Course Evaluation

  • Quizzes: 30%
  • Mid semester exam: 30%
  • End semester exam: 30%
  • Participation: 10%

Some references (not an exhaustive list)

  • Ross, S.M., 2022. Simulation. Academic Press.
  • Ross, S.M., 1995. Stochastic processes. John Wiley & Sons.
  • Bertsekas, D. and Tsitsiklis, J.N., 2008. Introduction to probability (Vol. 1). Athena Scientific.
  • Blitzstein, J.K., and Hwang J., 2019. Introduction to probability. Taylor & Francis Group, LLC.

Tentative Lecture Plan

Lecture Date Topic
Lecture 1 6-Jan-2026 Introduction to Monte Carlo Simulations
Lecture 2 7-Jan-2026 Pseudorandom number generators
Lecture 3 8-Jan-2026 Inverse transform for discrete random variables
Lecture 4 13-Jan-2026 Accept-Reject sampling for discrete random variables
Lecture 5 15-Jan-2026 Code our AR sampler for Binomial(n,p) together
Lecture 6 15-Jan-2026 Composition method
Lecture 7 20-Jan-2026 Inverse transform for continuous random variables, Accept-Reject sampling for continuous random variables
Lecture 8 21-Jan-2026 Accept-Reject sampling for continuous random variables
Lecture 9 27-Jan-2026 Quiz 1
Lecture 10 28-Jan-2026 Accept-Reject sampling for continuous random variables
Lecture canceled 3-Feb-2026 Sampling from a uniform circle; Some more examples for AR sampling
Lecture 11 4-Feb-2026 Sampling from a uniform circle; Some more examples for AR sampling
Lecture 12 5-Feb-2026 Code together - AR sampler for circle, AR sampler for Gamma distribution
Lecture 13 10-Feb-2026 Box-Muller method; Ratio of Uniforms
Lecture 14 11-Feb-2026 Ratio of Uniforms; Miscellaneous methods in sampling
Lecture 15 12-Feb-2026 Miscellaneous methods in sampling
Lecture 16 17-Feb-2026 Simple Monte Carlo, Importance sampling
Lecture 17 18-Feb-2026 Importance sampling
Lecture 18 19-Feb-2026 Importance sampling
Lecture 19 25-Feb-2026 Optimal Importance sampling
Lecture 20 26-Feb-2026 Quiz 2; Uncertainty; Entropy
6-Mar-2026 Mid Semester Examination
Lecture 21 10-Mar-2026
Lecture 22 11-Mar-2026
Lecture 23 12-Mar-2026
Lecture 24 17-Mar-2026
Lecture 25 18-Mar-2026
Lecture 26 19-Mar-2026
Lecture 27 24-Mar-2026
Lecture 28 25-Mar-2026
Lecture 29 26-Mar-2026
Lecture 30 1-Apr-2026
Lecture 31 7-Apr-2026
Lecture 32 8-Apr-2026
Lecture 33 9-Apr-2026
Lecture 34 13-Apr-2026
Lecture 35 16-Apr-2026
Lecture 36 21-Apr-2026
Lecture 37 22-Apr-2026
Lecture 38 23-Apr-2026
Lecture 39 28-Apr-2026
Lecture 40 29-Apr-2026
Lecture 41 30-Apr-2026
8-May-2026 End Semester Examination